
Automated Verification of UML Models of Services?

Federico Banti, Rosario Pugliese, and Francesco Tiezzi

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
{fbanti,tiezzi.f}@gmail.com, rosario.pugliese@unifi.it

Abstract. We build a bridge between different layers of abstraction of the en-
gineering process of Service-Oriented Architectures. We present an encoding
of the UML profile UML4SOA in the process calculus COWS and the soft-
ware tool UStoC that implements the encoding. The encoding provides a rigor-
ous semantics for UML4SOA and its implementation enables the verification of
UML4SOA models of services by exploiting the tools and methodologies avail-
able for COWS. We demonstrate the effectiveness of our approach by means of
the translation and analysis of an automotive scenario.

1 Introduction

Service-Oriented Architectures (SOAs) provide methods and technologies for program-
ming and deploying software applications that can run over globally available network
infrastructures. The most successful implementations of the SOA paradigm are prob-
ably the so called web services, sort of independent computational entities accessible
by humans and other services through the Web. They are, in general, loosely coupled
and heterogeneous, widely differing in their internal architecture and, possibly, in their
implementation languages. Both stand alone web services and web service-based sys-
tems usually have requirements like, e.g., service availability, functional correctness,
and protection of private data. Implementing services satisfying these requirements de-
mands the use of rigorous software engineering methodologies that encompass all the
phases of the software development process, from modelling to deployment, and exploit
formal techniques for qualitative and quantitative verification. The goal is to initially
specify the services by exploiting a high-level modelling language and then to transform
the specification towards the final deployment. This methodology should guarantee the
properties of the implementation code by means of the application of formal methods
to test the behavioral and quantitative properties of the specification.

The most widely used language for modelling software systems is probably
UML [20]. It is intuitive, powerful, and extensible. Recently, a UML 2.0 profile, chris-
tened UML4SOA [16], has been designed for modeling SOAs. In particular, we focus
our attention on UML4SOA activity diagrams since they express the behavioral aspects
of services, which we are mainly interested to. Inspired to WS-BPEL [18], the OASIS
standard for orchestrating web services, UML4SOA activity diagrams integrate UML
with specialized actions for exchanging messages among services, specialized struc-
tured activity nodes and activity edges for representing scopes equipped with event,
fault and compensation handlers. Currently, UML4SOA lacks formal semantics and

? This work has been supported by the EU project SENSORIA, IST-2 005-016004.

must hence be regarded as an informal modelling language. Furthermore, since it is a
static model, UML4SOA specifications are not suitable for direct automated analysis.

On the contrary, several process calculi have been recently designed (e.g., [12, 10,
5, 11]) providing linguistic primitives for the specification of SOAs, and formal tech-
niques and software tools for verification of their qualitative and quantitative properties.
These calculi are based on formal and rigorous semantics and provide a higher level of
abstraction w.r.t. actual web service languages and platforms. However, they might still
be too low level and impractical for developers accustomed to work with abstract archi-
tectural models of services, but not with the technicalities of process calculi.

To pave the way for an integrated approach that can lead to a verifiable development
of service components by exploiting the work on process calculi, in this paper we define
an encoding of UML4SOA in COWS [12]. In fact, in [1] we have first used UML4SOA
activity diagrams to specify the behaviour of a financial service and then translated by
hand these diagrams to COWS terms to enable a subsequent analysis phase. We have
thus experimented that COWS’s distinctive features are particularly suitable for encod-
ing services specified by UML4SOA diagrams. This is not surprising if one consider
that both UML4SOA and COWS are inspired to WS-BPEL. Our encoding formalizes
those intuitions and supports a more systematic and mathematically well-founded ap-
proach to engineering of SOA systems, where developers can concentrate on modelling
the high-level behaviour of the system and exploit the encoding for analysis purposes.

The presented encoding is compositional, i.e. the translation of a UML4SOA activ-
ity diagram is the COWS term resulting from the parallel composition of the transla-
tions of its components, which supports expansibility and applicability to large systems.
However, since the semantics of UML4SOA is only informally specified, correctness
cannot be treated, i.e. it cannot be formally proved that the semantics of the COWS term
resulting from application of the encoding conforms to the intended semantics of the
original UML4SOA diagram. On the contrary, the encoding defines a precise ‘transfor-
mational’ semantics for the UML4SOA profile. In fact, it is quite intuitive and direct,
which makes us confident to have correctly rendered the original informal semantics.

We have then empirically assessed the quality of our UML4SOA’s semantics while
developing, and then using, UStoC, a software tool that implements the encoding. The
automated translation provided by UStoC enables the use of the techniques and tools
developed for COWS to verify UML4SOA models of services. Thus, e.g., given a ser-
vice specification, one can check confidentiality properties by using the type system of
[13], information flow properties using the static analysis of [2], behavioural proper-
ties using the logic and the model checker of [9], and quantitative properties using the
stochastic extension introduced in [22]. Here, to illustrate the approach, a UML4SOA
model of a service system is first translated into a COWS term by exploiting UStoC,
then its formal properties are verified by using the COWS model checker CMC [9].

The rest of the paper is structured as follows. Section 2 presents an overview of
UML4SOA, also by means of an automotive scenario, and our proposal for a BNF-like
(graphical) syntax of UML4SOA. Section 3 briefly reviews COWS. Section 4 presents
the COWS-based transformational semantics of UML4SOA. Section 5 uses the auto-
motive scenario for illustrating the usage of UStoC and the automated verification tech-
niques supported by CMC. Finally, Section 6 touches upon related and future work.

2

2 An overview of UML4SOA

We start by informally presenting UML4SOA through a realistic but simplified scenario
in the automotive area. The example is inspired to a case study from the EU project
Sensoria [27] on developing sound methodologies for SOAs. In our scenario, a car
is equipped with a service-oriented application that, when a severe failure occurs and
the car is no longer drivable, tries to book a garage for repairing the car and a tow
truck for hauling the car to the garage, and to rent a substitutive car. The application
operates by orchestrating the booking services of the garage, the car rental and the
tow truck. To simplify the exposition, we assume that diagnostic data, car location and
communication endpoints of the services mentioned above have been already collected
and used to initialize the service orchestrator.

The orchestrator, illustrated in Figure 1, after its initialization, starts with a
send&receive action sending the diagnosticData of the failure and identification data
id univocally identifying the car to the garage service (garage). The orchestrator then
awaits for a response message from the garage, containing an answer (yes or no) saying
if the garage can repair the failure or not, the coordinates of the garage and other data.
These information are stored, respectively, in the variables garageAnswer, garageGps
and gData. As soon as this action is executed, a compensation handler is installed.
The compensation consists of a send action delivering a message asking to delete the
reservation. The garage answer is then checked by a decision node. If the answer is
positive, another send&receive action is performed for reserving a tow truck by the
towTruck service. If also this service replies positively, a third send&receive action al-
lows the orchestrator to contact the car rental service (rentalCar) and to rent a car that
will be handed over to the driver at the garage location. If either the garage or the tow
truck service answer is negative, an exception is raised by performing an action raise. A
merge node is used for merging the two branches of the workflow dealing with negative
answers. The exception is caught by an exception handler that triggers the necessary
compensations by an action compensateAll and then rents a car that will be handed over
at the current location of the broken car (rather than at the garage location).

The garage service is illustrated in Figure 2. Since we are mainly interested in the
interaction with the client, the schema of the service internal behaviour is simplistic.
A new instance is created whenever a reservation request is received containing the
client identity (stored in the variable id) and other data (stored in the variable data).
The instance performs a non-deterministic choice by means of a decision node and,
afterwards, either replies negatively to the client and terminates, or provides a positive
answer and awaits for a possible request for deletion from the client. The tow truck ser-
vice behaves similarly to the garage service, while the car rental service always replies
positively. Their modelling UML4SOA diagrams are reported in Appendix C.

The syntax of UML4SOA is given in [16] by a metamodel in classical UML-style.
We provide in Table 1 an alternative BNF-like syntax that is more suitable for defining
an encoding by induction on the syntax of constructs; it is the exact syntax accepted by
the tool, which returns an error when the input does not comply with it. Each row of the
table represents a production of the form SYMBOL ::= ALTER1 | . . . | ALTERn, where
the non-terminal SYMBOL is in the top left corner of the row (with a gray background),
while the alternatives ALTER1, . . . , ALTERn are the other elements of the row.

3

Fig. 1. The service orchestrator of the automotive scenario

To simplify the encoding and its exposition we adopt some mild restrictions. We
assume that every action and scope has one incoming and one outgoing control flow
edge (except for receiving actions that may have no incoming edge), that a fork or deci-
sion node has one incoming edge, and that a join or merge node has one outgoing edge.
These restrictions do not compromise expressivity of the language and are often implic-

4

Fig. 2. The garage service

itly adopted in practice for sake of clarity for highlighting convergence and divergence
of flows. For instance, an action node with one incoming and one outgoing edge pre-
ceded and followed by, respectively, a join and a fork node is often used in place of an
action node with multiple incoming and outgoing edges. We also omit many classical
UML constructs, in particular object flows, exception handlers, expansion regions and
several UML actions, since UML4SOA offers specialized versions of such constructs.

A UML4SOA application is a finite set of orchestrations ORC. We use orc to range
over orchestration names. An orchestration is a UML activity enclosing one top level
scope with, possibly, several nested scopes. A scope is a UML structured activity that
permits explicitly grouping activities together with their own associated variables, ref-
erences to partner services, event handlers, and a fault and a compensation handler. A
list of variables is generated by the following grammar:

VARS ::= nil | X , VARS | �wo� X , VARS

We use X to range over variables and the symbol �wo� to indicate that a variable is
‘write-once’, i.e. a sort of late bound constant that can be used, e.g., to store a correlation
datum (see [18, Sections 7 and 9] for further details) or a reference to a partner service.
Lists of variables can be inductively built from nil (the empty list) by application of
the operator “,”. Graphical editors for specifying UML4SOA diagrams usually permit
declaring local variables as properties of a scope activity, but they are not depicted in the
corresponding graphical representations. Instead, here we explicit the variables local to
a scope because such information is needed for the translation in COWS. For a similar
reason, we show the edge names in the graphical representation of a graph. To obtain
a compositional translation, each edge is divided in two parts: the part outgoing from
the source activity and the part incoming into the target activity. In the outgoing part a
guard is specified; this is a boolean expression and can be omitted when it is true.

A graph GRAPH can be built by using edges to connect initial nodes (depicted by
large black spots), final nodes (depicted as circles with a dot inside), control flow nodes,
actions and scopes. It is worth noticing that for each incoming edge there should exist an
outgoing edge with the same name, and vice-versa. Moreover, we assume that (pairs of

5

ORC

SCOPE

GRAPH

REC ACTION CONTROL FLOW

ACTION SCOPE GRAPH GRAPH

CONTROL FLOW

FORK JOIN DECISION MERGE

ACTION REC ACTION

Table 1. UML4SOA syntax

incoming and outgoing) edges in orchestrations are pairwise distinct. These properties
are guaranteed for all graphs generated by using any UML graphical editor. If a receiv-
ing action, namely a RECEIVE or a RECEIVE&SEND, has no incoming edges, then it
starts when a message is received and remains enabled to wait for other messages (like
a UML AcceptEventAction [20, Section 12.3.1]). This kind of action permits specifying

6

persistent services, i.e. services capable of creating multiple instances to serve several
requests simultaneously, such as the garage service depicted in Figure 2.

Event, exception and compensation handlers are activities linked to a scope by re-
spectively an event, a compensation and an exception activity edge. An event handler is
a scope triggered by an event in the form of incoming message. For each event handler,

indeed, we assume that its graph GRAPHev i takes the form REC ACTION
GRAPH. A compensation handler is a scope whose execution semantically rolls back
the execution of the related main scope. It is installed when execution of the related
main scope completes and is executed in case of failure. An exception handler is an
activity triggered by a raised exception whose main purpose is to trigger execution of
the installed compensations. Default event handlers are empty graphs, while default ex-
ception and compensation handlers are, respectively, as follows: a graph composed of a
RAISE action preceded and followed by initial and final nodes, and a graph composed
of a COMPENSATE ALL action preceded and followed by initial and final nodes. For
readability sake, these handlers will be sometimes omitted from the representation.

Control flow nodes CONTROL FLOW are the standard UML ones: fork and join
nodes (depicted by bars), decision and merge nodes (depicted by diamonds).

Finally, UML4SOA provides seven specialized actions. SEND sends the message
resulting from the evaluation of expressions expr1,. . . ,exprn (whose exact syntax is de-
liberately omitted, since UML4SOA is parametric w.r.t. their language) to the partner
service identified by p. RECEIVE permits receiving a message, stored in X1,. . . ,Xn,
from the partner service identified by p. Send actions do not block the execution flow,
while receive actions block it until a message is received. Actions SEND&RECEIVE
and RECEIVE&SEND, are shortcuts for, respectively, a sequence of a send and a re-
ceive action from the same partner and vice-versa. RAISE causes normal execution flow
to stop and triggers the associated exception handler. COMPENSATE triggers compen-
sation of its argument scope, while COMPENSATE ALL, only allowed inside a com-
pensation or an exception handler, triggers compensation of all scopes (in the reverse
order of their completion) nested directly within the same scope to which the handler
containing the action is related.

3 An overview of COWS

COWS (Calculus for the Orchestration of Web Services, [12]) is a recently proposed
process calculus for specifying and combining services. Indeed, the calculus permits
readily modelling several specific features of SOAs as, e.g., service instances with
shared states, processes playing more than one partner role, and stateful sessions made
by several correlated service interactions. This is achieved by means of a novel combi-
nation of constructs, some of which borrowed from well-known process calculi, as e.g.
non-binding receiving activities, asynchronous communication, polyadic synchroniza-
tion, pattern-matching, protection, and delimited receiving and killing activities.

The syntax of COWS is presented in Table 2. It is parameterized by three countable
and pairwise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .), the set
of values (ranged over by v, v′, . . .) and the set of ‘write-once’ variables (ranged over
by x, y, . . .). The set of values is left unspecified; however, we assume that it includes

7

s ::= u • u′!ε̄ | g (invoke, receive-guarded choice)
| [e] s | s | s | ∗ s (delimitation, parallel composition, replication)
| kill(k) | {|s|} (kill, protection)

g ::= 0 | p • o?w̄.s | g + g (empty, receive prefixing, choice)

Table 2. COWS syntax

the set of names, ranged over by n, m, o, p, . . . , mainly used to represent partners and
operations. The syntax of expressions, ranged over by ε, is deliberately omitted; we just
assume that they contain, at least, values and variables, but do not include killer labels
(that, hence, cannot be exchanged in communication).

We use w to range over values and variables, u to range over names and variables,
and e to range over elements, i.e. killer labels, names and variables. The bar ¯ denotes
tuples (ordered sequences) of homogeneous elements, e.g. x̄ stands for a tuple of vari-
ables as 〈x1, . . . , xn〉. We assume that variables in the same tuple are pairwise distinct.
We adopt the following conventions for operators’ precedence: monadic operators bind
more tightly than parallel, and prefixing more tightly than choice. Finally, we omit trail-
ing occurrences of 0 and write [e1, . . . , en] s in place of [e1] . . . [en] s.

Invoke and receive are the basic communication activities provided by COWS. Be-
sides input parameters and sent values, both activities indicate an endpoint, i.e. a pair
composed of a partner name p and of an operation name o, through which communi-
cation should occur. An endpoint p • o can be interpreted as a specific implementation
of operation o provided by the service identified by the logic name p. An invoke p • o!ε̄
can proceed as soon as the evaluation of the expressions ε̄ in its argument returns the
corresponding values. A receive p • o?w̄.s offers an invocable operation o along a given
partner name p and continues as s. Execution of a receive within a choice permits to
take a decision between alternative behaviours. Partner and operation names are dealt
with as values and, as such, can be exchanged in communication (although dynami-
cally received names cannot form the endpoints used to receive further invocations).
This makes it easier to model many service interaction and reconfiguration patterns.

The delimitation operator is the only binder of the calculus: [e] s binds e in the scope
s. The scope of names and variables can be extended while that of killer labels cannot (in
fact, they are not communicable values). Besides for generating ‘fresh’ private names
(as ‘restriction’ in π-calculus), delimitation can be used for introducing a named scope
for grouping certain activities. It is then possible to associate suitable termination ac-
tivities to such a scope, as well as ad hoc fault and compensation handlers, thus laying
the foundation for guaranteeing transactional properties in spite of services’ loose cou-
pling. This can be conveniently done by relying on the kill activity kill(k), that causes
immediate termination of all concurrent activities inside the enclosing [k] (which stops
the killing effect), and the protection operator {|s|}, that preserves intact a critical activity
s also when one of its enclosing scopes is abruptly terminated.

Delimitation can also be used to regulate the range of application of the substitution
generated by an inter-service communication. This takes place when the arguments of
a receive and of a concurrent invoke along the same endpoint match and causes each
variable argument of the receive to be replaced by the corresponding value argument of
the invoke within the whole scope of variable’s declaration. In fact, to enable parallel
terms to share the state (or part of it), receive activities in COWS do not bind variables.

8

Execution of parallel terms is interleaved, except when a kill activity or a com-
munication can be performed. Indeed, the former must be executed eagerly while the
latter must ensure that, if more than one matching receive is ready to process a given
invoke, only one of the receives with greater priority (i.e. the receives that generate the
substitution with ‘smaller’ domain, see [12] for further details) is allowed to progress.
Finally, the replication operator ∗ s permits to spawn in parallel as many copies of s as
necessary. This, for example, can be exploited to model persistent services.

4 A transformational semantics for UML4SOA through COWS

We start underlining the general layout of our encoding of UML4SOA diagrams in
COWS, then we provide specific explanations along with the presentation of each case.
We refer the reader to Table 1 for the names of the encoded UML4SOA elements.

At top level, an orchestration ORC is encoded through an encoding function [[·]]
that returns a COWS term. Function [[·]] is in turn defined in terms of another encoding
function [[·]]orc

VARS that additionally takes as arguments the name orc of the enclosing or-
chestration and the names of the variables defined at the level of the encoded element.
The argument orc is used for translating the communication activities, by specifying
who is sending/receiving messages. The variable names VARS are necessary for delim-
iting the scope of the variables used by the translated element. Variables are essential
since, as we will show, they enable sharing received messages among the various ele-
ments of a scope and storing names of partner links.

Graphs. We start by providing in Table 3 the encoding of the graph elements, i.e.
nodes with incoming and outgoing edges, treating for now actions and scopes as black
boxes and focusing on the encoding of passage of control among nodes. The encoding
of a GRAPH is given simply by the parallel execution of all the COWS processes re-
sulting from the encoding of its elements. An element of a graph is encoded as a process
receiving and sending signals by its incoming and outgoing edges, respectively. These
edges are respectively translated as receive and invoke activities, where each edge name
e is encoded by a COWS endpoint e. A guard is encoded by a COWS (boolean) ex-
pression εguard. Guards are exchanged as boolean values between invoke and receive
activities and the communication is allowed only if the evaluation of a guard is true.
With the exception of initial and final nodes, the encoding of every node is a COWS
process made persistent by using replication, since a node can be visited several times
in the same workflow (this may occur if the activity diagram contains cycles). Practi-
cally, an initial node is translated as a signal along its outgoing edge. The encoding of a
FORK node is a COWS service that can be instantiated by performing a receive activ-
ity corresponding to the incoming edge. After the synchronization, an invoke activity
is simultaneously activated for each outgoing edge. The encoding of a JOIN node is a
service performing a sequence of receive activities, one for each incoming edge, and
of an activity invoking its outgoing edge. The order of the receive activities does not
matter, since, anyway, to complete its execution, i.e. to invoke the outgoing edge, syn-
chronization over all incoming edges is required. In the encoding of a DECISION node,
the endpoints n1, . . . , nn (one for each outgoing edge) are locally delimited and used
for implementing a non-deterministic guarded-choice that selects one endpoint among

9

[[GRAPH1 GRAPH2]]orc
VARS = [[GRAPH1]]orc

VARS | [[GRAPH2]]orc
VARS

[[]]orc
VARS = e!〈εguard〉

[[FORK]]orc
VARS = ∗ e?〈true〉. (e1!〈εguard1 〉 | . . . | en!〈εguardn 〉)

[[JOIN]]orc
VARS = ∗ e1?〈true〉. en?〈true〉. e!〈εguard〉

[[DECISION]]orc
VARS = ∗ e?〈true〉. [n1, . . . , nn] (n1!〈εguard1 〉 | . . . | nn!〈εguardn 〉

| n1?〈true〉. e1!〈true〉 + . . . + nn?〈true〉. en!〈true〉)
[[MERGE]]orc

VARS = ∗ (e1?〈true〉. e!〈εguard〉 + . . . + en?〈true〉. e!〈εguard〉)

[[]]orc
VARS = e?〈true〉. (kill(kt) | {|t!〈〉|})

[[ACTION]]orc
VARS = ∗ e1?〈true〉. [t] ([[ACTION]]orc

VARS | t?〈〉. e2!〈εguard〉)

[[REC ACTION]]orc
VARS = [t] ([[REC ACTION]]orc

VARS | t?〈〉. e!〈εguard〉)

[[SCOPE]]orc
VARS = ∗ e1?〈true〉. [t, i] ([[SCOPE]]orc

VARS | t?〈〉.

[n] (i!〈n〉 | n?〈〉.(stack • push!〈scopeName(SCOPE), n〉 | n?〈〉.e2!〈εguard〉)))

Table 3. Encoding of graph elements

those whose guard evaluates to true, thus enabling the invocation of the corresponding
outgoing edge. A MERGE node is encoded as a choice guarded by all its incoming
edges; all guards are followed by an invoke of its outgoing edge. Final nodes, when
reached, enable a kill activity kill(kt), where the killer label kt is delimited at scope
level, that instantly terminates all the unprotected processes in the encoding of the en-
closing scope (but without affecting other scopes). Simultaneously, the protected term
t!〈〉 sends a termination signal to start the execution of (possible) subsequent activities.

An ACTION node with an incoming and an outgoing edge is encoded as a service
performing a receive on the incoming edge followed by the encoding of ACTION and, in
parallel, a process waiting for a termination signal sent from the encoding of ACTION
along the internal endpoint t and then performing an invoke on the outgoing edge.
Of course, t is delimited to avoid undesired synchronization with other processes. A
REC ACTION node with an outgoing edge and without an incoming one is encoded as a
service performing the encoding of REC ACTION in parallel with the process handling
the termination signal. The encoding of a SCOPE node is similar to that of an ACTION
node, with two main additions. When a SCOPE terminates, the encoding of its node
sends a fresh endpoint n along i enabling the compensation related to the scope, awaits
for an acknowledgement along n and sends its name and n to the local Stack process
in case compensation activities are started (see the encoding of compensation handlers
below for further explanations). After another acknowledgement, it performs an invoke
on the outgoing edge. Function scopeName(·), given a scope, returns its name.

Actions. The encoding of actions is shown in Table 4. Sending and receiving actions
are translated by relying on, respectively, COWS invoke and receive activities. Special
care must be taken to ensure that a sent message is received only by the intended RE-
CEIVE action and partner. For this purpose, in encoded terms, the action names are used

10

[[SEND]]orc
VARS = {| [[p]]orc

VARS
• name!〈orc, εexpr1 , . . . , εexprn 〉 |} | t!〈〉

[[RECEIVE]]orc
VARS = orc • name?〈[[p]]orc

VARS, [[X1]]orc
VARS, . . . , [[Xn]]orc

VARS〉. t!〈〉

[[RAISE]]orc
VARS = kill(kr) | {|r!〈〉|}

[[COMPENSATE]]orc
VARS = c • scopeName!〈scopeName〉 | t!〈〉

[[COMPENSATE ALL]]orc
VARS = [n] (stack • compAll!〈n〉 | n?〈〉.t!〈〉)

Table 4. Encoding of actions

as operation names, and the name orc of the orchestration enclosing the receive action
is used as partner name. A SEND and a RECEIVE action can exchange messages only
if they share the same name.

Action SEND is encoded in COWS by an invoke activity sending the tuple
〈orc, εexpr1 , . . . , εexprn〉, where orc indicates the sender of the message and will be used
by the receiver to (possibly) provide a reply. The invoked partner p is rendered either as
the link p, in case p is a constant, or as the COWS variable xp in case p is a write-once
variable. In parallel, a termination signal along the endpoint t is sent for allowing the
computation to proceed. [[p]]orc

VARS is p if �wo� p < VARS, and xp otherwise; simi-
larly, each εexpri is obtained from expri by replacing each X in the expression such that
�wo�X∈VARS with x X. Action RECEIVE is encoded as a COWS receive along the
endpoint orc • name, with input pattern a tuple where the first element is the encoding
of the link pin p and the others are either COWS variables x X if �wo�X ∈VARS or
variables X otherwise. This way, a message can be received if its correlation data match
with those of the input pattern and, in this case, the other data are stored as current
values of the corresponding variables. The encodings of actions SEND&RECEIVE and
RECEIVE&SEND have been omitted, because they simply results from the composi-
tion of the encodings of actions SEND and RECEIVE.

The behavior, and thus the encoding, of a RAISE action is somehow similar to that
of a final node. In both cases a kill activity is enabled, in parallel with a protected ter-
mination signal invoking an exception handler. They differ for the killer label and the
endpoint along which the termination signal is sent. In this way, a RAISE action termi-
nates all the activities in its enclosing scope (where kr is delimited) and triggers related
the exception handler (by means of signal r!〈〉). An exception can be propagated by
an exception handler that executes another RAISE action. Notably, since default excep-
tion handlers simply execute a RAISE action and terminate, not specifying exception
handlers results in the propagation of the exception to the further enclosing scope until
eventually reaching the top level and thus terminating the whole orchestration. Action
COMPENSATE is encoded as an invocation of the compensation handler installed for
the target scope. Action COMPENSATE ALL is encoded as an invocation of the local
Stack process requiring it to execute (in reverse order w.r.t. scopes completion) all the
compensation handlers installed within the enclosing scope.

Variables, scopes and orchestrations. The encoding of the variables delimited
within scopes, scopes (and related handlers) themselves, and whole orchestrations is
shown in Table 5. Variables declared write-once (by means of �wo�) directly cor-
responds to COWS variables (as we have seen, e.g., in the encoding of SEND). The

11

[[nil]] = 0 [[X , VARS]] = VarX | [[VARS]] [[�wo� X]] , VARS = [[VARS]]

[[SCOPE]]orc
VARS′ = [e, vars(VARS)]

([stack] ([r] ([kr, kt] ([[GRAPH]]orc
VARS′ ,VARS | {| Stack |}

| ∗ [t, kt] [[GRAPHev 1]]orc
VARS′ ,VARS

| . . . | ∗ [t, kt] [[GRAPHev n]]orc
VARS′ ,VARS) | r?〈〉. e!〈〉)

| [[VARS]] | e?〈〉. {| [t, kt] [[GRAPHe]]orc
VARS′ ,VARS |})

| [y] i?〈y〉. {| y!〈〉 | c • scopeName?〈scopeName〉.
[t] ([kt] [[GRAPHc]]orc

VARS′ ,VARS | t?〈〉. stack • end!〈scopeName〉)
| ∗ [x] c • scopeName?〈x〉. stack • end!〈scopeName〉 |}))

[[ORC]] = isPersistent(SCOPE) [kr, c, t, r, i, stack, edges(SCOPE)] [[SCOPE]]orc
nil

Table 5. Encoding of variables, scopes and orchestrations

remaining variables, i.e. variables that store values and can be rewritten several times
(as usual in imperative programming languages), are encoded as internal services ac-
cessible only by the elements of the scope. Specifically, a variable X is rendered as a
service VarX providing two operations along the public partner name X: read, for get-
ting the current value; write, for replacing the current value with a new one. Variables
like X may (temporarily) occur in expressions used by invoke and receive activities
within COWS terms obtained as result of the translation. To get rid of these variables
and finally obtain ‘pure’ COWS terms, we exploit the encoding introduced in [12] that,
for the sake of completeness, we report in the Appendix A.

A SCOPE is encoded as the parallel execution, with proper delimitations, of the
processes resulting from the encoding of all its components. Function vars(·), given a
list of variables VARS, returns a list of COWS variables/names, where a COWS name X
corresponds to a variable X in VARS, while a COWS variable xX corresponds to a vari-
able�wo� X in VARS. The (private) endpoint r catches signals generated by RAISE
actions and activate the corresponding handler, by means of the (private) endpoint e.
Killer labels kr and kt are used to delimit the field of action of kill activities generated by
the translation of action RAISE or of final nodes, respectively, within GRAPH. When a
scope successfully completes, its compensation handler is installed by means of a signal
along the endpoint i. Installed compensation handlers are protected to guarantee that
they can be executed despite of any exception. Afterwards, the compensation can be
activated by means of the partner name c. Notably, a compensation handler can be exe-
cuted only once. After that, the term ∗ [x] c • scopeName?〈x〉. stack • end!〈scopeName〉
permits to ignore further compensation requests (by also taking care not to block the
compensation chain). The (protected) Stack service associated to a scope offers, along
the partner name stack, three operations: end to catch the termination of the scope spec-
ified as argument of the operation, push to stack the scope name specified as argument
of the operation into the associated Stack, and compAll that triggers the compensation of
all scopes whose names are in Stack. Due to lack of space, we relegate the specification
of Stack to the Appendix A.

The encoding of an orchestration is that of its top-level scope. Function
isPersistent(·) returns either the replication symbol ∗ if the top-level scope directly con-
tains at least a REC ACTION node or the empty string otherwise; function edges(·)
returns the names of all the edges of the graphs contained within its argument scope.

12

Fig. 3. A screenshot of UStoC interface

5 Verification of the automotive scenario

We have developed a software tool, called UStoC1, to automatise the encoding illus-
trated in Section 4. The COWS terms generated by UStoC are written in the syntax
accepted by CMC2 [9], a model checker supporting analysis of COWS specifications.

UStoC accepts as an input a set of files XMI (XML Metadata Interchange [19]) stor-
ing a UML4SOA specification. Such files can be automatically generated by the UML
modeler MagicDraw3 [17] where, to allow users to graphically specify UML4SOA ac-
tivity diagrams, the UML4SOA profile [15] must have been previously installed. In fact,
the diagrams of Figures 1 and 2 have been edited by using MagicDraw. For the time be-
ing, MagicDraw is the only CASE tool supporting the UML4SOA profile. However, the
use of XMI as the input format makes UStoC independent of the tool used for the high-
level system specification. Thus, it should also be able to support XMI files produced
by other tools for which UML4SOA plug-ins would be properly developed.

UStoC is written in Java to guarantee portability across different platforms and to
exploit well-established libraries for parsing XML documents. The tool comprises three
main components: a graphical user interface, a screenshot of which is shown in Fig-
ure 3; an XMI parser, which creates a Java object for each element of a diagram; and a
translator, which consists of a set of classes, one for each UML4SOA element, each of
which providing a method toCOWS() that returns the COWS translation of the corre-
sponding element. When toCOWS() is invoked on an object representing a UML4SOA
orchestration, it translates the orchestration and, recursively, the enclosed elements.

Figure 4 illustrates an example of automated verification process of UML4SOA
models of services where the tools MagicDraw, UStoC and CMC are used in combina-

1 UStoC is a free software; it can be downloaded from http://rap.dsi.unifi.it/cows/tools/ustoc.zip
and redistributed and/or modified under the terms of the GNU General Public License.

2 For the experiments carried out in this paper, we have used the Java standalone version of
CMC (v0.7g), which is downloadable at http://fmt.isti.cnr.it/cmc.

3 We have used MagicDraw Academic Personal Edition 16.5, which is freely available for qual-
ifying institutions. One can also use MagicDraw Community Edition, which provides a mini-
mal functionality set and is free for developers working on non-commercial projects.

13

Fig. 4. Verification process of UML4SOA models of services

tion. We have applied such process to the scenario introduced in Section 2. To analyse
the scenario, firstly we have generated a file XMI (saved with extension .uml) for each
UML4SOA diagram by using MagicDraw. Then, we have loaded the four created files
into UStoC (by using the ‘Add’ button on the right-hand side of the graphical interface)
and encoded them into a COWS term (by pressing the ‘Start encoding’ button). An
excerpt of the obtained COWS term is reported in Appendix B. Afterwards, we have
exported the COWS code from UStoC to CMC. This can be done either by simply cop-
ing the code from the UStoC text area and pasting it into the CMC text area or by saving
the code in a .cow file (by selecting ‘Save as .COW file . . . ’ from the ‘File’ menu) and
opening it in CMC. Some logical formulae that we have verified by using CMC over
the COWS specification of the automotive scenario follow:

– AF {reserve(rentalCar,yes,*)} true
This formula means that the orchestrator eventually succeeds in renting
a car, i.e. it eventually (operator AF) receives a positive answer (action
reserve(rentalCar,yes,*)) from the rental car service.

– AG [reserve(towTruck,no,*)] AF {delete} true
This formula means that, if the tow truck booking fails, the garage booking is
compensated. That is, it holds globally (operator AG) that if (operator [·]) the
tow truck service’s answer is negative (action reserve(towTruck,no,*)), then
it holds that eventually (operator AF) the compensation is executed (action delete).

– EF {reserve(garage,yes,*,*)}
EF {reserve(towTruck,yes,*)} EF {reserve(rentalCar,yes,*)} true

This formula means that the orchestration can succeed in making all reservations. In
fact, EF formulameans that formula can eventually hold. A stronger form of this
property, meaning that the orchestration always succeeds, is given by the formula:
AF {reserve(garage,yes,*,*)}

AF {reserve(towTruck,yes,*)} AF {reserve(rentalCar,yes,*)} true

All the above properties hold for the considered scenario, but for the stronger form of
the last property, because a service might reply negatively to a reservation request.

6 Concluding remarks

Through the presented encoding of UML4SOA in COWS, two languages recently de-
fined within the EU project Sensoria [27], and the related implementation, we have laid
down the basis for an integrated approach that, by exploiting the work on process cal-
culi, can lead to a verifiable development of service components starting from abstract
architectural models (a similar aim has led to [4]). To pursue our long-term goal, we are
currently developing a tool that closely integrates UStoC and CMC. A challenging issue

14

we are tackling is to tailor and reflect the (low-level) results obtained by the verification
of COWS terms to the corresponding (high-level) UML4SOA specifications.

The problem of defining a formal semantics for (subsets of) UML activity diagrams
has been tackled by many authors. A largely followed approach is based on (extensions
of) Petri Nets (see, e.g., [8, 23]). Although Petri Nets can be a natural choice for encod-
ing workflows, they seem however not to fit well for such constructs as compensation,
message correlation and shared variables, that are more relevant for UML4SOA. Other
approaches have introduced operational semantics through transition systems (e.g. [25,
6]), stochastic semantics [24], and transformation into SMV specifications [3], but none
of them considers the UML4SOA profile and, above all, seems to be adequate for en-
coding its specific constructs.

An environment for verifying UML diagrams based on the VIATRA framework is
presented in [7]. However, to the best of our knowledge, VIATRA does not support
the UML4SOA profile. The same applies for the various graph transformation tools
considered in [26] that translate high-level UML activity diagrams into CSP processes.

A software tool translating UML4SOA models into WS-BPEL is presented in [16].
The translation, however, does not apply to all possible UML4SOA diagrams and is not
compositional. Furthermore, WS-BPEL code has not a univocal semantics (see [14]),
thus the translation does not provide a formal semantics to UML4SOA models. Indeed,
as far as we know, our encoding is the first (transformational) semantics of UML4SOA.

As target of our encoding, we have singled COWS out of several similar process
calculi for its distinctive primitives and mechanisms, specifically the termination con-
structs and the correlation mechanism. In fact, kill activities are suitable for represent-
ing ordinary and exceptional process terminations, while protection permits to naturally
represent exception and compensation handlers that are supposed to run after normal
computations terminate. Even more crucially, the correlation mechanism permits to au-
tomatically correlate messages belonging to the same interaction, preventing to mix
messages from different service instances. Defining a transformational semantics for
UML4SOA using a session-based calculus (e.g. [5, 11]) appears to be problematic and
less intuitive, mainly because UML4SOA is not session-oriented, thus the specific fea-
tures of these calculi are of little help. Compared to other correlation-oriented calculi
(like, e.g., [10]), COWS seems to be more adequate since it relies on more basic con-
structs; furthermore, it already provides a number of verification tools.

Recently, another UML profile for designing SOAs, named SoaML [21], has been
introduced. With respect to UML4SOA, SoaML is more focused on architectural as-
pects of services and relies on the standard UML 2.0 activity diagrams without further
specializing them. A new version of the UML4SOA profile has been then released,
which basically integrates Protocol State Machine Diagrams for modelling services ex-
ternal to a given orchestration. We plan to study the feasibility of extending our encod-
ing, and the related implementation, to the new UML4SOA profile.

References

1. F. Banti, A. Lapadula, R. Pugliese, and F. Tiezzi. Specification and Analysis of SOC Systems
using COWS: A Finance Case Study. In WWV, ENTCS 235, pp. 71–105. Elsevier, 2009.

15

2. J. Bauer, F. Nielson, H.R. Nielson, and H. Pilegaard. Relational Analysis of Correlation. In
SAS, LNCS 5079, pp. 32–46. Springer, 2008.

3. M. E. Beato, M. Barrio-Solrzano, C. E. Cuesta, and P. de la Fuente. UML automatic verifi-
cation tool with formal methods. In VLFM, ENTCS 127 (4), pp. 3–16, Elsevier, 2005.

4. L. Bocchi, J.L. Fiadeiro, A. Lapadula, R. Pugliese, and F. Tiezzi. From Architectural to
Behavioural Specification of Services. In FESCA, ENTCS. Elsevier, 2009. To appear.

5. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for Structured
Service Programming. In FMOODS, LNCS 5051, pp. 19–38. Springer, 2008.

6. M.L. Crane and J. Dingel. Towards a UML virtual machine: implementing an interpreter for
UML 2 actions and activities. In CASCON, pp. 96–110. ACM, 2008.

7. G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. VIATRA - Visual
Automated Transformations for Formal Verification and Validation of UML Models. In
ASE, pp. 267–270. IEEE, 2002.

8. C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and C. Stehno. Compositional Semantics
for UML 2.0 Sequence Diagrams Using Petri Nets. In SDL, LNCS 3530, pp. 133–148, 2005.

9. A. Fantechi et al. A model checking approach for verifying COWS specifications. In FASE,
LNCS 4961, pp. 230–245. Springer, 2008.

10. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A Calculus for Service
Oriented Computing. In ICSOC, LNCS 4294, pp. 327–338. Springer, 2006.

11. I. Lanese, F. Martins, A. Ravara, and V.T. Vasconcelos. Disciplining Orchestration and Con-
versation in Service-Oriented Computing. In SEFM, pp. 305–314. IEEE, 2007.

12. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. Tech-
nical report, Università di Firenze, 2007. http://rap.dsi.unifi.it/cows/papers/cows-esop07-
full.pdf. An extended abstract appeared in ESOP, LNCS 4421, pp. 33-47, Springer.

13. A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating data exchange in service oriented appli-
cations. In FSEN, LNCS 4767, pp. 223–239. Springer, 2007.

14. A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. In COORDINA-
TION, LNCS 5052, pp. 199–215. Springer, 2008.

15. P. Mayer, N. Koch, and A. Schroeder. The UML4SOA profile (version 1.2), December 2008.
Available at http://www.uml4soa.eu/profile.

16. P. Mayer, A. Schroeder, and N. Koch. Mdd4soa: Model-driven service orchestration. In
EDOC, pp. 203–212. IEEE, 2008.

17. No Magic. MagicDraw UML academic personal edition 16.5. http://www.magicdraw.com/.
18. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.
19. Object Management Group. XMI Mapping Specification, v2.1.1.
20. Object Management Group. Unified Modeling Language (UML), v2.1.2, 2007.
21. Object Management Group. Sevice oriented architecture Modeling Language (SoaML) -

Specification for the UML Profile and Metamodel for Services (UPMS), 2008.
22. D. Prandi and P. Quaglia. Stochastic COWS. In ICSOC, LNCS 4749, pp. 245–256, 2007.
23. H. Störrle and J.H. Hausmann. Towards a Formal Semantics of UML 2.0 Activities. In

Software Engineering, LNI 64, pp. 117–128. GI, 2005.
24. N. Tabuchi, N. Sato, and H. Nakamura. Model-driven performance analysis of UML de-

sign models based on stochastic process algebra. In ECMDA-FA, LNCS 3748, pp. 41–58.
Springer, 2005.

25. M.H. ter Beek, S. Gnesi, and F. Mazzanti. Formal verification of an automotive scenario in
service-oriented computing. In ICSE, pp. 613–622. ACM, 2008.

26. D. Varró et al. Transformation of UML Models to CSP: A Case Study for Graph Transfor-
mation Tools. In AGTIVE, LNCS 5088, pp. 540–565. Springer, 2008.

27. M. Wirsing et al. At your service: Service Engineering in the Information Society Technolo-
gies Program, chapter SENSORIA: Engineering for Service-Oriented Overlay Computers,
pp. 159–182. MIT Press, 2009.

16

A Auxiliary encodings

We report here the definitions of some cases of the encoding that, due to lack of space,
have been left out from the paper. We will write I , s to assign a name I to the term s.

Encoding of rewritable variables

A rewritable variable X is rendered as a service VarX providing ‘read’ and ‘write’ func-
tionalities along the public partner name X. When the service variable is initialized (i.e.
the first time the ‘write’ operation is used), an instance is created that is able to pro-
vide the value currently stored. When this value must be updated, the current instance
is terminated and a new instance is created which stores the new value.

VarX , [xv, xa] X •write?〈xv, xa〉.
[n] (n!〈xv, xa〉

| ∗ [x, y] n?〈x, y〉. (y!〈〉 | [k] (∗ [y′] X • read?〈y′〉. {|y′!〈x〉|}
| [x′, y′] X •write?〈x′, y′〉.

(kill(k) | {|n!〈x′, y′〉|}))))

Service VarX provides two operations: read, for getting the current value; write, for
replacing the current value with a new one. To access the service, a user must invoke
these operations by providing a communication endpoint for the reply and, in case of
write, the value to be stored. The write operation can be invoked along the public partner
X; the first time, it corresponds to initialization of the variable. VarX uses the delimited
endpoint n to store the current value of the variable. This permits to implement further
read operations in terms of forced termination and re-instantiation. Delimitation [k] is
used to confine the effect of the kill activity to the current instance, while protection {| |}
avoids forcing termination of pending replies and of the invocation that will trigger the
new instance.

Variables like X may (temporarily) occur in expressions used by invoke and receive
activities within COWS terms obtained as result of the encoding. To get rid of these
variables and finally obtain ‘pure’ COWS terms, we exploit the following encodings:

〈〈u • u′!ε̄〉〉 = [m, n1, . . . , nm] if ε̄ contains X1, . . . ,Xm

(X1 • read!〈n1〉 | . . . | Xm • read!〈nm〉

| [x1, . . . xm] n1?〈x1〉. nm?〈xm〉. m! ε̄ ·{Xi 7→ xi}i∈{1,..,m}
| [x̄] m?x̄. u • u′!x̄)

〈〈p • o?w̄.s〉〉 = [x1, . . . xm] if w̄ contains X1, . . . ,Xm

p • o?w̄·{Xi 7→ xi}i∈{1,..,m} .
[n1, . . . , nm] (X1 •write!〈x1, n1〉 | . . . | Xm •write!〈xm, nm〉

| n1?〈〉. nm?〈〉. 〈〈s〉〉)

where {Xi 7→ xi} denotes substitution of Xi with xi, and endpoint m returns the result of
evaluating ε̄ (of course, we are assuming that m, ni and xi are fresh).

17

Stack

The Stack service associated to a scope is rendered in COWS as follows:

[q] (Lifo | ∗ [x, y] stack • push?〈x, y〉. q • push!〈x, y〉
| ∗ [x] stack • compAll?〈x〉. [loop] (loop!〈〉 | ∗ loop?〈〉.Comp))

where loop is used to model a while cycle executing Comp. The term Comp pops
a scope name scopeName out of Lifo and invokes the corresponding compensation
handler (by means of c • scopeName!〈scopeName〉); in case Lifo is empty, the cy-
cle terminates and a termination signal is sent along the argument x of the operation
compAll.

Comp , [r, e] (q • pop!〈r, e〉 | [y] (r?〈y〉. (c • y!〈y〉 | stack • end?〈y〉. loop!〈〉)
+ e?〈〉. x!〈〉))

Lifo is an internal queue providing ‘push’ and ‘pop’ operations. Stack can push and
pop a scope name into/out of Lifo via q • push and q • pop, respectively. To push, Stack
sends the value to be inserted, while to pop sends two endpoints: if the queue is not
empty, the last inserted value is removed from the queue and returned along the first
endpoint, otherwise a signal along the second endpoint is received. Each value in the
queue is stored as a triple made available along the endpoint h and composed of the
actual value, and two correlation values working as pointers to the previous and to the
next element in the queue. The correlation value retrieved along m is associated with the
element on top of the queue, if this is not empty, otherwise it is empty.

Lifo , [m, h] (∗ [yv, yr, ye, y]
(q • push?〈yv, y〉.[z] (m?〈z〉. [c] (h!〈yv, z, c〉 | m!〈c〉 | y!〈〉))

+q • pop?〈yr, ye〉.[z] (m?〈z〉.[yv, yt] h?〈yv, yt, z〉.(m!〈yt〉 | yr!〈yv〉)
+m?〈empty〉.(m!〈empty〉 | ye!〈〉)))

| m!〈empty〉)

Notice that, because of the COWS’s (prioritized) semantics, whenever the queue is
empty, the presence of receive m?〈empty〉 prevents taking place of the synchronization
between m!〈empty〉 and m?〈z〉.

B COWS translation of the automotive scenario

The UML4SOA specification of the automotive scenario introduced in Section 2 is
translated in COWS, by means of the encoding illustrated in Section 4, as follows4:

Orchestrator | Garage | TowTruck | RentalCar

The term is the parallel composition of the service orchestrator and the three booking
services. Hereafter, we only focus on the term Orchestrator, which is defined as follows:

4 For the sake of presentation, we have not applied here the encoding presented at page 17 that
permits removing the rewritable variables used by a COWS term.

18

[kr, c, t, r, i, stack, e1, . . . , e17, e, gData, tData, rData,
xgarageAnswer, xgarageGps, xtowAnswer, xrentalAnswer]
([stack] ([r] ([kr, kt] (ReservationGraph | {| Stack |})

| r?〈〉. e!〈〉)
| VargData | VartData | VarrData | e?〈〉. {| [t, kt] ExceptionGraph |})

| [y] i?〈y〉. {| y!〈〉 | c • reservation?〈reservation〉.
[t] ([kt] DefaultComp | t?〈〉. stack • end!〈reservation〉)

| ∗ [x] c • reservation?〈x〉. stack • end!〈reservation〉 |})

where the handlers are

ExceptionGraph , e15!〈true〉
| ∗ e15?〈true〉. [t] ([n] (stack • compAll!〈n〉 | n?〈〉. t!〈〉)

| t?〈〉. e16!〈true〉)
| ∗ e16?〈true〉.

[t] ({|rentalCar • reserve!〈orchestrator, id, carGps〉|}
| orchestrator • reserve?〈rentalCar, xrentalAnswer, rData〉. t!〈〉
| t?〈〉. e17!〈true〉)

| e17?〈true〉. (kill(kt) | {|t!〈〉|})

DefaultComp , [ea, eb]
(ea!〈true〉
| ∗ ea?〈true〉. [t] ([n] (stack • compAll!〈n〉 | n?〈〉. t!〈〉)

| t?〈〉. eb!〈true〉)
| eb?〈true〉. (kill(kt) | {|t!〈〉|}))

The term ReservationGraph, modelling the main behaviour of the top level scope,
is as follows:

e1!〈true〉
| ∗ e1?〈true〉. [t, i] (GarageScope

| t?〈〉. [n] (i!〈n〉 | n?〈〉.(stack • push!〈garageReservation, n〉
| n?〈〉.e6!〈true〉)))

| ∗ e6?〈true〉. [n1, n2] (n1!〈xgarageAnswer = yes〉 | n2!〈xgarageAnswer = no〉
| n1?〈true〉. e8!〈true〉 + n2?〈true〉. e7!〈true〉)

| ∗ e8?〈true〉. [t] (TowTruck s&r | t?〈〉. e9!〈true〉)
| ∗ e9?〈true〉. [n3, n4] (n3!〈xtowAnswer = yes〉 | n4!〈xtowAnswer = no〉

| n3?〈true〉. e11!〈true〉 + n4?〈true〉. e10!〈true〉)
| ∗ (e7?〈true〉. e12!〈true〉 + e10?〈true〉. e12!〈true〉)
| ∗ e11?〈true〉. [t] (RentalCar s&r | t?〈〉. e14!〈true〉)
| ∗ e12?〈true〉. [t] (kill(kr) | {|r!〈〉|} | t?〈〉. e13!〈true〉)
| e13?〈true〉. (kill(kt) | {|t!〈〉|})
| e14?〈true〉. (kill(kt) | {|t!〈〉|})

Intuitively, the above term is the parallel composition of the activities that form (from
the top to the bottom) the main graph of scope reservation: the initial node, the
scope garageReservation (modelled by the COWS term GarageScope), the first de-
cision node, the receive&send action reserve having towTruck as partner (modelled by

19

the COWS terms TowTruck s&r), the second decision node, the merge node, the re-
ceive&send action reserve having rentalCar as partner (modelled by the COWS terms
RentalCar s&r), the raise action notFound and the two final nodes.

The term GarageScope, modelling the scope garageReservation, is

[e]
([stack] ([r] ([kr, kt] (GarageGraph | {| Stack |}) | r?〈〉. e!〈〉)

| e?〈〉. {| [t, kt] DefaultExc)|}
| [y] i?〈y〉. {| y!〈〉 | c • garageReservation?〈garageReservation〉.

[t] ([kt] GarageComp | t?〈〉. stack • end!〈garageReservation〉)
| ∗ [x] c • garageReservation?〈x〉. stack • end!〈garageReservation〉 |}))

where

GarageGraph , e2!〈true〉
| ∗ e2?〈true〉.

[t] ({|garage • reserve!〈orchestrator, id, diagnosticData〉|}
| orchestrator • reserve?〈garage, xgarageAnswer, xgarageGps, gData〉.
t!〈〉
| t?〈〉. e3!〈true〉)

| e3?〈true〉. (kill(kt) | {|t!〈〉|})

DefaultExc , [ea, eb]
(ea!〈true〉
| ∗ ea?〈true〉. [t] (kill(kr) | {|r!〈〉|} | t?〈〉. eb!〈true〉)
| eb?〈true〉. (kill(kt) | {|t!〈〉|}))

GarageComp , e4!〈true〉
| ∗ e4?〈true〉. [t] ({|garage • delete!〈orchestrator, id〉|} | t!〈〉

| t?〈〉. e5!〈true〉)
| e5?〈true〉. (kill(kt) | {|t!〈〉|})

The remaining terms of ReservationGraph are as follows:

TowTruck s&r , {|towTruck • reserve!〈orchestrator, id, carGps, xgarageGps〉|}

| orchestrator • reserve?〈towTruck, xtowAnswer, tData〉. t!〈〉

RentalCar s&r , {|rentalCar • reserve!〈orchestrator, id, xgarageGps〉|}

| orchestrator • reserve?〈rentalCar, xrentalAnswer, rData〉. t!〈〉

C Other services of the automotive scenario

The remaining UML4SOA diagrams of the external services involved in the automotive
scenario, i.e. (a) the tow truck service and (b) the car rental service are as follows.

20

(a)

(b)

21

