
Automated Functional Testing
based on the Navigation of Web

Applications

Boni García - Juan Carlos Dueñas

Universidad Politécnica de Madrid
(Spain)

Table of Content

1. Introduction

– Research Statement

2. Background

3. Approach

4. Implementation: ATP

5. Case Study

6. Conclusions

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 2

1. Introduction

• Web has become in one of the most
influential instrument in the history of
mankind

• Software testing is the main technique to
ensure quality and find bugs, but it is time-
consuming

• Testing is often poorly performed or skipped
by practitioners

• Test automation can help to avoid this
situation

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 3

1.1. Research Statement

• Problem:

– How to achieve automated functional testing in
web applications?

• Proposal:

– Automated evaluation of the correct navigation of
web applications (assessment of the specified
functional requirements) by using real browsers

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 4

Table of Content

1. Introduction

2. Background
– Automated Software Testing

– Web Modelling

– Graph Theory

3. Approach

4. Implementation: ATP

5. Case Study

6. Conclusions

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 5

2. Background (I)

• Automated Software Testing (AST):
“Application and implementation of software
technology throughout the entire Software
Testing Lifecycle (STL) with the goal to improve
efficiencies and effectiveness”

• AST Frameworks (http://www.automatedtestinginstitute.com/):

– 1st generation: Record & Playback (R&P)

– 2nd generation: Data-driven

– 3rd generation: Model-based

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 6

http://www.automatedtestinginstitute.com/
http://www.automatedtestinginstitute.com/

2. Background (II)
• Web Modeling:

• Graph Theory:
– Graph = Set of vertices (nodes) connected by edges (links)
– Digraph = Graph in which edges have orientation
– Multidigraph = Digraph in which multiples edges and loops

are allowed
– Path = Sequence of vertices such from each node there is

an edge to the next vertex

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 7

Data UI Person alization Transactional Non-functional

UWE V V V

W2000 V V V V

WebML V V

NDT V V V V V

Table of Content

1. Introduction

2. Background

3. Approach
– Finding Paths in a Digraph

– Navigation Modelling

– Data-Driven View

– Automated Verification

4. Implementation: ATP

5. Case Study

6. Conclusions

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 8

3. Approach

• High-Level Description:

1. To use graph theory to represent and work with
the navigation of web applications

2. To model correct navigation with different
models (pre-automation)

3. To develop framework to perform automated
test generation, execution and reporting

4. To provide data-driven testing by compiling test
data and oracles in tabular files, i.e. Excel spread-
sheets (post-automation)

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 9

3.1. Finding Paths in a Digraph (I)

• Possible methods/algorithms:

–Graph Traversal: Breadth-First Search (BFS)
and Depth-First Search (DFS)

–Traveling Salesman Problem (TSP)

–The Shortest Path Problem (SPP): Dijkstra,
Bellman-Ford, A*, and Floyd-Warshall

–The Chinese Postman Problem (CPP)

–The Node Reduction (NR) algorithm

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 10

3.1. Finding Paths in a Digraph (II)

• Alternatives: CPP or NR

• CPP: E1·E3·E4·E5 + E1·E7 + E1·E2·E6 + E0

• NR: E1·E7 + E0·E5·E6 + E1·E3·E4·E5·E6 + E1·E2·E6

Is really better CPP than CPP?

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 11

3.1. Finding Paths in a Digraph (III)

• CPP vs. NR: Laboratory Experiment:

– Comparison between these algorithms, using
random multidigraphs with incremental number of
links (from 1 to 50).

– For each digraph NR and CPP will be executed,
comparing its cost (number of links employed in
the resulting set of paths), and the computation
time (milliseconds to achieve the solution).

– Repeated 100 times, and the mean of the values
(cost and time) will be displayed by charts.

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 12

3.1. Finding Paths in a Digraph (IV)

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 13

CPP has better
behaviour in cost
and time resolution!

3.2. Navigation Modelling (I)

• Modelling navigation by testers/developers
(pre-automation):

– UML: Based on NDT, created with Enterprise
Architect (in XMI format):

• Use cases

• Activity diagrams

• Presentation diagrams

– R&P: HTML Scripts, recorded with Selenium IDE

– XML: Self-defined XSD Schema

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 14

3.2. Navigation Modelling (II)

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 15

<?xml version ="1.0" encoding ="ISO - 8859 - 1" ?>

<website xmlns ="http://www.dit.upm.es/atp"
xmlns:xsi ="http://www.w3.org/2001/XMLSchema -

instance"
xsi:schemaLocation ="http://www.dit.upm.es/atp

http://atestingp.sourceforge.net/atp.xsd"

base= "http://localhost:8080/ WebAdmin/">

 <home id= " login ">

 <data locator =" username ">

 <value >Administrador</ value >

 </data>

 <data locator =" password ">

 <value >admin </ value >

 </data>

 </home>

 <transition from =" login ">

 <action target= "frmDatos_0" event =" click " />

 <to state =" init " />

 <to state =" login " />

 </ transition >

 <state id= " init ">

 <assert locator ="texto - entrada" type =" text ">

 <value >Welcome</ value >

 </ assert >

 </ state >

</ website >

3.3. Data-Driven View
• Data-driven testing (post-automation): Test data

and oracles in tabular files (Excel):

• The elements are located in the DOM document
using looking for:
– id , name, value , text attributes
– XPath expression

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 16

Test data (input) Oracles (expected output)

ὭὲͅὩὰὩάὩὲὸ … ὭὲͅὩὰὩάὩὲὸ έόὸͅὩὰὩάὩὲὸ … έόὸͅὩὰὩάὩὲὸ

Ὠὥὸᾥ … Ὠὥὸᾥ έόὸὧέάὩͺ … έόὸὧέάὩͺ

Ὠὥὸᾥ … Ὠὥὸᾥ έόὸὧέάὩͺ … έόὸὧέάὩͺ

… … … … … …

3.4. Automated Verification

• While automated browsing is performed, the
following assessment is done:
– State verification:

• The existence of each defined data field is ensured

• Each test oracle is assessed

• Each is state component in the DOM is checked (e.g. frames,
images, …)

• Each state is validated as the aggregation of the defined
locators (data fields and oracles)

• JavaScript notifications are captured

– Transition verification:
• Each transition locator is assessed and executed

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 17

3.5. Summary

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 18

Table of Content

1. Introduction

2. Background

3. Approach

4. Implementation: ATP

– Architecture

– Commands

5. Case Study

6. Conclusions

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 19

4. Implementation: ATP

• The proposed approach has been implemented
in a open-source testing framework: Automatic
Testing Platform (ATP):

http://atestingp.sourceforge.net/

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 20

http://atestingp.sourceforge.net/
http://atestingp.sourceforge.net/

4.1. ATP Architecture

• Open-source components:

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 21

Function Library URL

Unit Framework JUnit http://www.junit.org/

Web browsing Selenium http://seleniumhq.org/

Test case generation Freemarker http://freemarker.sourceforge.net/

Data generation dgMaster http://dgmaster.sourceforge.net/

Test case execution Ant http://ant.apache.org/

Graph manipulation JUNG http://jung.sourceforge.net/

XML parsing JDOM http://www.jdom.org/

Spread-sheet access JExcelAPI http://jexcelapi.sourceforge.net/

http://www.junit.org/
http://seleniumhq.org/
http://freemarker.sourceforge.net/
http://dgmaster.sourceforge.net/
http://ant.apache.org/
http://jung.sourceforge.net/
http://www.jdom.org/
http://jexcelapi.sourceforge.net/

4.2. ATP Commands

• ATP has been implemented as a command-line
(shell) tool:

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 22

> atp

[INFO] ATP (Automatic Testing Platform) v2.0

[INFO] [http ://atestingp.sourceforge.net]

[INFO] Copyright (c) 2011 UPM. Apache 2.0 license.

[INFO]

[INFO] Use one of these options:

[INFO] atp create

[INFO] atp run

[INFO] atp clean

[INFO] atp list

[INFO] atp set <key> < value >

[INFO] atp report

Table of Content

1. Introduction

2. Background

3. Approach

4. Implementation: ATP

5. Case Study
– Pre-Automation

– Post-Automation

– Results

6. Conclusions

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 23

5. Case Study

• System Under Test: “Factur@”, which is an
electronic invoice web management system which
has been developed using a Model Driven
Engineering (MDE) approach

• Research Questions (RQ):
– RQ1: Does the Factur@ application accomplish its

functional requirements?

– RQ2: Is ATP capable of finding defects in a finished web
application?

– RQ3: What are the advantages and disadvantages of
different types of input (UML, XML, and R&P) to ATP?

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 24

5.1. Pre-Automation (I)

• Use cases:

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 25

5.1. Pre-Automation (II)

• Activity diagrams:

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 26

5.1. Pre-Automation (III)

• Presentation UML diagrams:

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 27

5.2. Post-Automation

• Post-Automation: Test data and oracles in Excel
files:

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 28

5.3. Results (I)

• Verdicts in the report:

– 6 functional errors (due to broken links, not navigational
issues)

– 8 functional warning (due to JavaScript notifications)

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 29

5.3. Results (II)

• Answers to RQs:

– RQ1: Factur@ has no navigation errors

– RQ2: ATP can discover failures in web applications

– RQ3: ATP input pros and cons:

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 30

Input Pros Cons

UML • Reuse model for testing
• Models describes every possible

path

• Test data and oracles are not attached
in the models.

• Post-automation step is mandatory.

XML • Every possible path can be depicted.
• Data and oracles can be attached

• XML files must be coded and
maintained by hand.

R&P • Scripts creation using Selenium IDE
against the real application.

• Data and oracles can be attached to
HTML scripts

• There is always a single path by HTML
script (linear recording).

• Error paths should be defined in
different scripts.

Table of Content

1. Introduction

2. Background

3. Approach

4. Implementation: ATP

5. Case Study

6. Conclusions

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 31

6. Conclusions (I)

• This piece of research has presented a method to
assess functional requirements of web
applications based on its navigation

• Correct navigation structure must defined (pre-
automation): UML (NDT), XML, R&P (HTML)

• Data-driven approach (post-automation) based on
generated Excel files with the data extracted from
the model and easily extensible

• Graph theory has been employed to model the
navigation and CPP is the algorithm to find the
paths

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 32

6. Conclusions (II)
• Implementation of this approach in a open-source

tool: Automatic Testing Platform (ATP)
• ATP is a mixed testing framework:

– 1st generation: It can use R&P linear scripts
– 2nd generation: It is data-driven
– 3rd generation: It can use UML models

• Future work:
– Extension of the approach to non-functional

requirements: Performance, Security, Compatibility,
Usability, and Accessibility

– Release of the implementation, ATP v2.0 (currently
only available ATP v1.0 to download)

WWV, June 9, 2011 (Reykjavik, Iceland) 08/06/2011 33

Thank you!

Boni García

bgarcia@dit.upm.es

mailto:bgarcia@dit.upm.es

