
A type checking algorithm for qualified
session types

Marco Giunti

INRIA & LIX, École Polytechnique Palaiseau

WWV June 9 2011, Reykjavik

Structured-oriented programmingSOP

• Session types are a static analysis technique for service oriented
protocols

• Allow for analyzing the message-passing interaction among a
service provider and a client

• Introduced for the pi calculus and now embedded also in other
paradigms:

- functional programming

- object oriented programming

• Idea: allowing typing of communication channels by using
polymorphic sequences of types as:

output Integer . output Boolean . input Boolean . end

2

Qualified session types

• Session types core: input, output and termination

?T.S input
!T.S output
end termination

• Qualifiers

lin?T.S linear input
lin!T.S linear output
S1 = un?T.S1 unrestricted recursive input
S2 = un!T.S2 unrestricted recursive output
un end termination

3

SOP in the pi calculus
• Example: event scheduling (e.g. Doodle)

• Two-steps service protocol for scheduling a meeting (client side)

1. Ask to create a poll

- provide a title for the meeting

- provide a provisional date

2. Invite participants

• Implementation: send request to create poll / receive poll channel

poll〈y〉.y(p).(p〈Workshop〉.p〈9June〉.(z1〈p〉 | · · · | zn〈p〉))

• Challenge: concurrent distribution of the poll channel

4

Session type for the poll

• Poll channel used first in linear mode then in unrestricted mode

1. Send a title for the poll (linear mode)

2. Send a date for the poll (linear mode)

3. Distribute the poll (unrestricted mode)

p〈Workshop〉.p〈9June〉.(z1〈p〉 | · · · | zn〈p〉)

• End point session type for channel p is

lin !string.lin !date.∗un !date

• Recursive type ∗un !date allows for distribution of poll channel

5

Concurrent session types

• Service: instantiation generates poll

Service =!poll(w).(νp : T)w〈p〉.p(title).p(date).!p(date)

• One channel end sent to the invoker

S1 = lin !string.lin !date. ∗ un !date

• The other channel end used in the continuation

S2 = lin ?string.lin ?date. ∗ un ?date

• Full type for p describes concurrent behavior of two channel ends

T = (S1, S2)

6

This talk

• We present a type checking algorithm for qualified session types
of the form

T = (S1, S2)

• The algorithm can be seen as an implementation of type system
` of [G&V@Concur’10]

• Soundness proved by resorting to `

• We discuss ongoing work on semantic completeness

7

Algorithmic type checking

• Well-known idea: in typing P | Q remove linear identifiers used
by P before type check Q (e.g. [Gay&Hole’05])

• Our approach: we reason at the type level and forbid (◦) use of
(parts of) types that have been:

1. delegated

2. consumed

(∼ ML) fun typeVar(Γ, x : (lin?T1.S1, lin!T2.S2) , x : lin?T1.S1) =

Γ, x : (◦, lin!T2.S2)

8

ML patterns

• Typings for processes are patterns of function:

fun check(g : context, p : process) : context

• Patterns matching deterministic for safe types (no backtracking)

1. dual unrestricted channel ends: (∗un?T , ∗un!T) and T safe

2. dual linear ends: (lin?T.S1, lin!T.S2) and T and (S1, S2) safe

• E.g.: typing an input process in linear mode

check(Γ, x : (lin?T.S1, lin!T.S2) , x(y).P) =

let val d = check(Γ, x : S1, y : T , P) in ...

9

Motivation of the design

• Algorithm works only for safe types = generalization balancing

• As usual, subject reduction only for balanced contexts

• The very reason is to preserve the soundness of the exchanges

P = x(y).if y then 0 else 0 | (νz : end)x〈z〉.0
x : (lin?bool.end, lin!end.end) ` P
P → (νz : end)if z then 0 else 0

6` (νz : end)if z then 0 else 0

• Soundness: algorithm rejects non balanced types

10

Type checking algorithm
• The top level call accepts the process if:

1. The environment in input is safe

2. An environment is given in output (no patterns exception)

3. The domain of the environment in output contains only consumed
types of the form ◦, un p, (unp1, unp2), (unp, ◦), (◦, ◦)

fun typeCheck(Γ : context, P : process) : bool =

if safe(Γ) then

let val ∆ = check(Γ, P) in

if consumed(∆) then true

11

A run

• Protocol described by concurrent execution of

Service =!poll(w).(νp : T) (w〈p〉.p(title).p(date).!p(date)

Invoker = poll〈y〉.y(p).(p〈Workshop〉.p〈9June〉.(z1〈p〉 | .. | zn〈p〉))
S1 = lin !string.lin !date. ∗ un !date

S2 = lin ?string.lin ?date. ∗ un ?date

T = (S1, S2)

Tw = lin!S1.un end

• Type checking succeeds

typeCheck(Γ, poll : (∗un ?Tw, ∗un !Tw) , Service | Invoker)

12

Checking the service continuation

• Replicated input spawns a thread for the poll

Service =!C

C = poll(w).(νp : T)w〈p〉.p(title).p(date).!p(date)

• Call requires environment in output = environment in input

• Intuition: only linear types change!

check(Γ,Service) =

let val ∆ = check(Γ, C)in

if (∆ = Γ) then ∆

13

Checking unrestricted input
• Service instantiation generates poll

C = poll(w).(νp : (S1, S2))w〈p〉.p(title).p(date).!p(date)

C ′ = (νp : (S1, S2))w〈p〉.p(title).p(date).!p(date)

Tw = lin!S1.un end

• Call: type of channel does not change, bound variable added

• Return: checks types for the bound variable to be consumed

check(Γ, poll : (∗un ?Tw, ∗un !Tw) , C) =

let val ∆ = check(Γ, poll : (∗un ?Tw, ∗un !Tw), w : Tw , C
′) in

if (∆ = ∆′, w : S) and (S = ◦ or S = un p) then ∆′

14

Checking restriction
• A poll with safe channel type is generated

C ′ = (νp : (S1, S2))w〈p〉.Q
Ω = Γ, poll : (∗un ?Tw, ∗un !Tw), w : Tw

• Call: add bound variable given that the type is safe

• Return: checks type for bound variable to be consumed

check(Ω , C ′) =

if safe((S1, S2)) then

let val ∆ = check(Ω, p : (S1, S2) , w〈p〉.Q) in

if (∆ = ∆′, p : (S ′, S ′′))

and (S ′ = ◦ or S ′ = un p)

and (S ′′ = ◦ or S ′′ = un p)

then ∆′

15

Delegation of a linear session
• Poll write capability S1 delegated over w of type Tw = lin !S1.un end

w〈p〉.Q
• Call for the continuation

1. session type for the channel unrolled

2. delegated end point S1 set to ◦ by calling fun checkVar

• Return

1. checks type for channel to be consumed

2. returns context with type for channel set to ◦

check(Ω1, w : Tw, p : (S1, S2) , w〈p〉.Q) = let... in

let val ∆ = check(Ω1, w : un end, p : (◦, S2) , Q) in

if ∆ = ∆′, w : S and S = ◦ or S = un p then ∆′, w : ◦

16

Checking parallel processes

• Concurrent delegation of poll channel to participants

P = z1〈p〉 | z2〈p〉 | · · · | zn〈p〉
S = ∗un !date

Γ = Γ1, z1 : lin!S.end, · · · , zn : lin!S.end, p : (◦, S)

• Parallel processes typed compositionally

check(Γ , P) =

let val ∆ = check(Γ , z1〈p〉) in

check(∆ , z2〈p〉 | · · · | zn〈p〉)

• In each call, the type of p in the input environment is (◦, S)

17

Exchanging compositions’ order

• Type checking the service protocol

check(Γ ,Service | Invoker) =

check (check (Γ , Service) , Invoker)

• Preservation of structural congruence!

check(Γ , Invoker | Service) = check(Γ , Service | Invoker)

18

Soundness

• We resort to declarative type system `

• System ` relies on non deterministic operation to split contexts

Γ = Γ1 · Γ2 Γ1, p : S1 ` p : S1 Γ2, w : end, p : S2 ` Q
Γ, p : (S1, S2), w : lin !S1.end ` w〈p〉.Q

• typeCheck(Γ, P) implies Γ ` P

19

Expressivity

• First, we type checked our motivating example

• Still, there are process accepted by ` that we do not type check

1. Γ1, x : (lin ?T.S1, lin !T.S2) ` x〈v〉.C[x(y).P]

2. Γ2, x : (lin ?T.S1, lin !T.S2) ` x(y).C[x〈v〉.Q]

3. Γ3, x : (lin ?T.S1, lin !T.S2) ` x〈x〉.P

• But these processes are deadlocked!

• How to prove?

20

Typed behavioral theory

• In parallel work we proposed typed barbed equivalence for
sessions

∆ |= P ∼= Q

1. Γ1 ` P,Γ2 ` Q

2. ∆ compatible with Γ1,Γ2 (e.g. no interference with a session)

3. P and Q have same barbs in all contexts type checked by ∆

• Proof technique: typed bisimulation

• Technical framework: polyadic pi calculus with matching, meet
operation over types...

21

Application

• Let Γi, x : (lin ?T.S1, lin !T.S2) ` Pi for i = 1, 2, 3

• Let ∆i be compatible with Γi, x : (lin ?T.S1, lin !T.S2) for
i = 1, 2, 3

1. ∆1 |= x〈v〉.C[x(y).P] ∼= 0

2. ∆2 |= x(y).C[x〈v〉.Q] ∼= 0

3. ∆3 |= x〈x〉.P ∼= 0

• Wow! So, what?

22

Towards semantic completeness

• Proof transformation: Γ1 ` P1 transformed in Γ2 ` P2

• Construction: take derivation tree for Γ1 ` P1 and substitute each
occurrence of Γ, x : (lin ?T.S1, lin !T.S2) ` x〈v〉.Q with ∅ ` 0

• Typed equivalence: ∆ compatible with Γ1,Γ2 implies

∆ |= P1
∼= P2

• Semantic completeness (in progress):

If Γ1 ` P1 with Γ1 balanced, then there is a transformation
Γ2 ` P2 such that ∆ |= P1

∼= P2 and typeCheck (Γ2, P2) .

23

Conclusions

• We introduced a type checking algorithm for the analysis of
structured-oriented programs in the pi calculus

• Technique relies on construct that describes the two ends of the
same channel

- Each end point is a linear or an unrestricted session type

- Linear types evolve to unrestricted types

• The algorithm is sound w.r.t. type system `

• We claim to type check all interesting processes accepted by `

24

Usefulness

• System ` enjoys type-preserving encodings of

1. linear lambda calculus [Walker&05]

2. linear pi calculus [KPT&TOPLAS’99]

3. pi calculus with polarities [GH&Acta’05]

• We therefore offer an algorithm for typing functional and mobile
languages based on linearity

• Other systems can be considered

[[(νxy : S)P]] = (νx : (S, S))[[P [x/y]]] [V@SFM’09]

25

Ongoing and future work

• Semantic completeness in progress

• Still, there are interesting processes that are not typable by `

!x(y).(νa)(y〈a〉.a(title).a(date).(!a(date) | a〈22March〉)

• Both capabilities needed in continuation for receive and send date

• Sub typing à la Pierce&Sangiorgi would fix this

26

	Title slide
	Structured-oriented programmingSOP
	Qualified session types
	SOP in the pi calculus
	Session type for the poll
	Concurrent session types
	This talk
	Algorithmic type checking
	ML patterns
	Motivation of the design
	Type checking algorithm
	A run
	Checking the service continuation
	Checking unrestricted input
	Checking restriction
	Delegation of a linear session
	Checking parallel processes
	Exchanging compositions' order
	Soundness
	Expressivity
	Typed behavioral theory
	Application
	Towards semantic completeness
	Conclusions
	Usefulness
	Ongoing and future work

