An Abstract Semantics for Inference of Types and Effects in a

Multi-Tier Web Language

Letterio Galletta  Giorgio Levi

Dipartimento di Informatica, Universita di Pisa
{galletta, levi}@di.unipi.it

Workshop on Automated Specification and Verification of Web
Systems, 2011




Multi-tier architecture

Standard web applications have a multi-tier architecture

Browser
(XHTML, Javascript)

request

h 4

response

N

Server Web
(PHR, JSP, ASPNET)

request

Vv

response

N

Database
(SQL, XQuery)

Each tier runs on a different computational environment characterized by
its language and its data representation (impedance mismatch problem)

2/23



LINKS: a Multi-Tier Web Language

Multi-tier web languages allow one to blend server, client and database
code and provide automatic mechanisms for the partition of the
application over tiers

3/23



LINKS: a Multi-Tier Web Language

Multi-tier web languages allow one to blend server, client and database
code and provide automatic mechanisms for the partition of the
application over tiers

LINKS
LINKS is a functional multi-tier web language
e from a single source code the compiler generates code for each tier

e support an unified cross-tier programming model by exploiting web
continuations

3/23



LINKS: a Multi-Tier Web Language

Multi-tier web languages allow one to blend server, client and database
code and provide automatic mechanisms for the partition of the
application over tiers

LINKS
LINKS is a functional multi-tier web language
e from a single source code the compiler generates code for each tier

e support an unified cross-tier programming model by exploiting web
continuations

Web continuations in LINKS

Closures (expression to be executed plus bindings of free variables)
stored in HTML pages

3/23



LINKS: security

Baltopoulos and Gordon have shown that
e storing web continuation in HTML page is not secure

e an attacker can violate

1. Secrecy
2. Data Integrity
3. Control Integrity

4/23



LINKS: security

Solution

To overtake the security issues they have proposed a secure
implementation that includes

1. a compilation strategy based on authenticated encryption

2. atypes-and-effects system to enable source level reasoning about
security of web applications

5/23



LINKS: security

Solution

To overtake the security issues they have proposed a secure
implementation that includes

1. a compilation strategy based on authenticated encryption

2. atypes-and-effects system to enable source level reasoning about
security of web applications

The secure implementation has been formalized for TINYLINKS, a
A-calculus augmented with

1. XML values for representing web pages
2. event e assert annotation for expressing safety properties

5/23



TINYLINKS

Syntax

f,y,x
P
c ::=Unit | Zero | Succ | String
| Nil | Cons | Tuple | Elem | Text
gu=+|—|x]|/

Li=p(Vy, ..., V)
V,Uu=x]|c(Vq,...,V,) | href(E)
| Ax1. ..., %0.E| form([1y, ..., 14],E)
E:=V|varx =E;;Ey | g(Ey, Ep)
[ V(Us, ..., Uy) | post([11 =Vq, ..., 1 =V,],U)
| get(V) | event L | assertL
switch(V){
casec(Xq, ... ,Xy) = E4
| S E,
}
6/23



Types-and-effects system

A powelful extension of type systems which allows one to statically reason
about program’s execution

F"MliTl&(]ﬁl Fl_MnTn&(bn
'EEM,..., M,):7&¢

7/23



Types-and-effects system

A powelful extension of type systems which allows one to statically reason
about program’s execution

premise | I'F My : 7 & T'EM,:7,&dp,
'EEM,....,M,):7&¢

conclusion effects

7/23



Types-and-effects system

A powelful extension of type systems which allows one to statically reason
about program’s execution

premise | T'F M : 7 & ¢y Fl_Mn:Tn&i(f)_nl\
conclusion | L E(M,..., My,): T&iil\,

effects

7/23



Types-and-effects system

A powelful extension of type systems which allows one to statically reason
about program’s execution

premise | I'F My : 7 & FFMn:Tn&4¢_n'\
conclusion | L E(Mi, ..., My): T&iil\> effects
It compute for each program phrase its type augmented with a semantic
property
o if '+ M, : 7; & ¢; = 7; is the type of the expression M; and the
semantic property ¢; holds

e thenT' + E(My, ..., M,) : 7& ¢ = 7 is the type of the expression
E(My, ..., M,) and the semantic property ¢ holds

7/23



TINYLINKS’s types-and-effects system

Goal
Whenever an assertion assert L occurs in the execution there exists a
previous occurrence of an event event L

exp

IbFFE=S < _T>{F:}

exp

ItFFEE<_T>{Fi}

8/23



TINYLINKS’s types-and-effects system

Goal
Whenever an assertion assert L occurs in the execution there exists a
previous occurrence of an event event L

exp

ITFFE= < _

exp

I'TFFE&E <

For each expression E compute
1. the type

8/23



TINYLINKS’s types-and-effects system

Goal
Whenever an assertion assert L occurs in the execution there exists a
previous occurrence of an event event L

1. the type
2. the preconditions

8/23



TINYLINKS’s types-and-effects system

Goal
Whenever an assertion assert L occurs in the execution there exists a
previous occurrence of an event event L

exp

IMFFE= < _:

exp

ITFFEE < T>

For each expression E compute
1. the type

2. the preconditions
3. the post-conditions

8/23




TINYLINKS’s types-and-effects system

Some example of rules

val

I[FHV < xml
T;F Fget(V) & (C:xml) { }

(T-Get)

9/23



TINYLINKS’s types-and-effects system

Some example of rules

S I‘;Fl—Vigstring Vie{l,...,n} F;Fl—Ulgxml
~Pos
F;Fl—post([(llzvl,...,1n=Vn)],U)e:z§)<_:xm1){}

9/23



TINYLINKS’s types-and-effects system

Some example of rules

T'ko fu(F,L) C dom(T") LeF
L=p(Vy,...,Va) DyFFV;2T, Vie{l,...,n}

(T-Assert) P
I';FFassertlL = (_:unit){L}

9/23



TINYLINKS’s types-and-effects system

Some example of rules

TFFUS T T=(x:Ty, ... % :T){Fi} oW fo(T)=0
(TA)F;FI—Vi%%lTi Vie{l,....,n} Fi[Vi/xi] ... [Va/xa] CF
-App

DyF U, V) WV /%] . [Va/ %)

9/23



TINYLINKS’s types-and-effects system
Safe Web Application

A web application E is safe if and only if there exists a proof within the
types-and-effects system of the judgment

@;@FE@(_:me{}

10/23



Types-and-effects system

Usually the definition of a types-and-effects analysis requires

1. Definition of rules

2. State and prove the soundness of analysis

3. Definition of inference algorithm

4. Prove that the algorithm is correct (soundness/completeness)

11/28



Types-and-effects system

Usually the definition of a types-and-effects analysis requires

1. Definition of rules

2. State and prove the soundness of analysis

3. Definition of inference algorithm

4. Prove that the algorithm is correct (soundness/completeness)

The approach used for the TINYLINKS’s types-and-effects system is
different
e each expression is translated in an expression of F7
o this translation hides the property of the analysis

11/28



Our goal

Reconstruct the TINYLINKS’s types-and-effects system by abstract
interpretation

12/23



Our goal

Reconstruct the TINYLINKS’s types-and-effects system by abstract
interpretation

Benefits

1. precise definition of relation between analysis and semantics
2. analysis is correct by construction

12/28



Our goal

Reconstruct the TINYLINKS’s types-and-effects system by abstract
interpretation

Benefits

1. precise definition of relation between analysis and semantics
2. analysis is correct by construction

We follow Cousot’s methodology for type systems

1. we define a denotational semantics for TINYLINKS (concrete
semantics)

2. we define a abstract semantics that computes types augmented by
effects

12/28



Concrete semantics

A denotational semantics that considers

13/23



Concrete semantics

A denotational semantics that considers
e TINYLINKS as an untyped A-calculus

Eval = (... + EEnv — (Eval x EEnv) + ...) L

Href

13/23



Concrete semantics

A denotational semantics that considers
e TINYLINKS as an untyped A-calculus

Eval = (... + EEnv — (Eval x EEnv) + ...) |

/ —

Domain of values Injection (Text, Form, Fun, ...)

13/23




Concrete semantics

A denotational semantics that considers
e TINYLINKS as an untyped A-calculus

Eval = (... + EEnv — (Eval x EEnv) + ...) 1

/' Hre f\

Domain of values Injection (Text, Form, Fun, ...)

¢ the occurrence and assertion of the events
EEnv = Pred — (Dval x Mark)

13/23




Concrete semantics

A denotational semantics that considers
e TINYLINKS as an untyped A-calculus

Eval = (... + EEnv — (Eval x EEnv) + ...) 1

/ Hre f\

Domain of values Injection (Text, Form, Fun, ...)

o the occurrence and assertion of the events
EEnv = Pred — (Dval x Mark)

Events environment {E, EA, A}

values in the events are integers only

13/23




Concrete semantics

Two semantic functions

1. for values
V[-] : VAL — Env — EEnv — Eval

2. for expressions
[-]: EXP — Env — EEnv — (Eval x EEnv)

14/23



Concrete semantics

Two semantic functions

1. for values
V[-] : VAL — Env — EEnv — Eval

2. for expressions

[-]: EXP — Env — EEnv — (Eval x EEnv)

Examples of semantic equation

[get(N)]pg = let™ v' = V[V]p¢ in
case v’ of

Href(f) = f¢
_ = (| WrongValue() |, ¢)

14/23



Concrete semantics

Two semantic functions
1. for values

V[-] : VAL — Env — EEnv — Eval
2. for expressions

[-]: EXP — Env — EEnv — (Eval x EEnv)

Examples of semantic equation

[assert q(V)]p¢ = let* ev = evalToDval(V[V]p¢) in
let (ev', m) = dgq
if ev = ev' then
(LUnit() ], ¢ [(ev', EA)/q])
else
(| WrongValue() |, ¢)

14/23



Unsoundness in TINYLINKS analysis

Consider the expression

get(Text("HelloWorld!”))

15/23



Unsoundness in TINYLINKS analysis

Consider the expression

get(Text("HelloWorld!”))

Semantics

[get(Text("HelloWorld!”))]p¢ = (| WrongValue(), ¢ |)

Error: the denotation of Text ("Hello World!") is nota link

15/23



Unsoundness in TINYLINKS analysis

Consider the expression
get(Text("HelloWorld!”))
Semantics

[get(Text("HelloWorld!”))]p¢ = (| WrongValue(), ¢ |)

Error: the denotation of Text ("Hello World!") is nota link

TINYLINKS’s types-and-effects system

0;0 F get(Text("HelloWorld!”)) € (_:xml){ }

the expression is type checked and the computed type is xml

15/23



Abstract domain

Values

Trouble

e types have annotations

integer{ } — integer{q:5,p:3}

16/23



Abstract domain

Values

Trouble

e types have annotations
integer{ } — integer{q:5,p:3}
e annotated types are not a free algebra

integer{ } — integer{q:5,p:3}
integer{ } — integer{p:3,q:5}

16/23



Abstract domain

Values

Trouble

e types have annotations
integer{ } — integer{q:5,p:3}
e annotated types are not a free algebra

integer{ } — integer{q:5,p:3}
integer{ } — integer{p:3,q:5}

Solution: simple type and constraints

16/23



Abstract domain

Values

Trouble

e types have annotations
integer{ } — integer{q:5,p:3}
e annotated types are not a free algebra

integer{ } — integer{q:5,p:3}
integer{ } — integer{p:3,q:5}
Solution: simple type and constraints

e we substitute the annotations in the types with annotation variables

16/23



Abstract domain

Values

Trouble

e types have annotations
integer{ } — integer{q:5,p:3}
e annotated types are not a free algebra
integer{ } — integer{q:5,p:3}
integer{ } — integer{p:3,q:5}
Solution: simple type and constraints
e we substitute the annotations in the types with annotation variables

e we introduce constraints to restrict annotation variables

integer(y;) — integer(2) 720 12 2{p:3,9:5}
16/23



Abstract domain

Values

¢ the events depend on the concrete values (Dval)

17/23



Abstract domain

Values

¢ the events depend on the concrete values (Dval)
o the abstract domain need to include the concrete values

17/23



Abstract domain

Values

¢ the events depend on the concrete values (Dval)
o the abstract domain need to include the concrete values

TipoS x Dval x Constr x TPred

(type, substltutlon)u NoType Pred — Dwal

concrete value constraints

17/23




Abstract semantics

Example of semantic equation

l[get()]“p ¢ =
v €V, fresh
let (ts, d, C, f) = V[V]"ppin
if ts # NoTypethen
case mgu({ ts.t = link(vy) } Uts.0) of
S(0) — let C' = {(8(n), q) €0(C) } in
if check(0(f < C'), ¢) then
(((B(zmi(v)), 6),
nodval, (C)\ C’, 0(f | C)), )
else
(Error, )
_— (Error, 1)
else
(Error, t)

18/23



Analyzer

Both the concrete and abstract semantics have been implemented as
OCaml programs

19/23



Analyzer

Both the concrete and abstract semantics have been implemented as
OCaml programs

e TINYLINKS programs are represented in abstract syntax

19/23



Analyzer

Both the concrete and abstract semantics have been implemented as
OCaml programs

e TINYLINKS programs are represented in abstract syntax

¢ the implementation have an unique semantic function parametrized
with respect to

19/23



Analyzer

Both the concrete and abstract semantics have been implemented as
OCaml programs
e TINYLINKS programs are represented in abstract syntax

¢ the implementation have an unique semantic function parametrized
with respect to

o the primitive operations

19/23



Analyzer

Both the concrete and abstract semantics have been implemented as
OCaml programs
e TINYLINKS programs are represented in abstract syntax

¢ the implementation have an unique semantic function parametrized
with respect to

o the primitive operations
o the semantic domain

19/23



Example 1

Expression

fun buy (value, dbpass) {
var = assert Pricels(value);

Text ("a")

20/23



Example 1

Expression

fun buy (value, dbpass) {
var _ = assert Pricels(value);
TeXt ("a")

}
Abstract semantics

(type -
Function (_#value#var0_, Integer(), _annvarO_,
Function (_#dbpass#varl_, _typevarl_, _annvar2_,
Xml (_annvard_), _annvar3_),
_annvarl_)
No_dval [ (_annvar2_,Pricels)]
{PricelIs -> _#value#varO_}, {})

20/23



Example 2

Expression

buy 5

21/23



Example 2

Expression

buy 5

Abstract semantics

(type -
Functlo n (_#dbpass#var3_, _typevar3_, _annvar7_,
Xml (_annvar9_), _annvard_)
Unknown [ (_annvar7_,PriceIs)] {PriceIs -> 5}, {})

21/23



Example 3

Expression

buy 5 ’)a”

22/23



e

W SUp,

Example 3

Expression

Mo

buy 5 "a

Abstract semantics

Exception: No_type "apply_fun: no preconditions"”

22/23



Conclusions

We have reconstructed the TINYLINKS’s types-and-effects system by
abstract interpretation

e we have precisely defined relationship between semantics and analysis
e we have shown unsoundness of TINYLINKS’s types-and-effects system

23/23



Conclusions

We have reconstructed the TINYLINKS’s types-and-effects system by
abstract interpretation

e we have precisely defined relationship between semantics and analysis
e we have shown unsoundness of TINYLINKS’s types-and-effects system

Future work

e Consider a type system with sub-types (1ink <: xml, form <: xml)
e Extend the class of value that can be used in the events
e Generalize the methodology and apply it to further analysis

23/23



